Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное учреждение науки Институт физиологии им. И.П. Павлова Российской академии наук

Вещицкий Александр Александрович

Исследование морфофункциональной архитектуры сенсомоторных нейронных сетей спинного мозга кошки, обеспечивающих ходьбу в разных направлениях

03.03.01 – физиология

03.03.04 – клеточная биология, цитология, гистология

Научные руководители: к.б.н. Меркульева Н.С. д.м.н. Мусиенко П.Е.

Санкт-Петербург 2018

Актуальность проблемы.

Передвижение в пространстве является неотъемлемой частью успешного существования животного в окружающей его среде. Активное перемещение сопровождается выполнением сложнейших двигательных задач, таких как координированная ходьба, поддержание веса тела, контроль скорости и направления передвижения (Gerasimenkoetal., 2005, 2006; Edgertonetal., 2008; Musienkoetal., 2009, 2010). Главным центром инициации двигательной активности конечностей у млекопитающих является мезэнцефалическая локомоторная область (МЛО) (Shik, Orlovsky, 1976), тонически возбуждающая специализируемую спинальную нейронную называемую локомоторным центральным генератором паттерна (ЦГП) сеть. (Cazaletsetal., 1995; Dimitrijevicetal., 1998; Duysens, Crommert, 1998; Bogachevaetal., 2009; Musienkoetal., 2009, 2010, 2012; Frigon, 2011). Данные сети могут быть запущены в обход МЛО посредством электрической эпидуральной стимуляции (ЭС) спинного мозга (Iwaharaetal., 1992; Gerasimenkoetal., 2003, 2005, 2008; Musienkoetal., 2007, 2009, 2012; Lavrovetal., 2015). При изучении ходьбы кошки в разных направлениях было выявлено, что стимуляция МЛО приводит к квадропедальной локомоции, ориентированной только вперед, в то время как ЭС спинного мозга способна инициировать шагательные движения, направленные в разные стороны (в том числе и назад), в зависимости от ориентации ленты тредбана и, соответственно, афферентного тока импульсов от рецепторов конечностей (Musienkoetal., 2012). Согласно, современным представлением локомоторный ЦГП состоит из двух уровней: генерирующих ритм и паттерн активации мышц (Lafreniere-Roula, McCrea, 2005; Rybaketal., 2006 a, 6; Brownstone, Wilson, 2008; McCrea, Rybak, 2008; Guertin, 2009; Rybaketal., 2015), однако морфофункциональная организация данных нейронных сетей во многом неясна. Существует масса вопросов относительно клеточного состава и функционального значения отдельных элементов спинальных сетей, их распределения в спинном мозге, связей между нейронами, возможного влияния на нейронные сети при заболеваниях и травмах нервной системы.

Цели и задачи исследования.

Целью настоящего исследования является изучение морфофункциональной организации сенсомоторных нейронных сетей спинного мозга кошки, контролирующих ходьбу в направлении вперед и назад.

Для достижения данной цели были поставлены следующие задачи:

1.Определить сегменты пояснично-крестцового утолщения спинного мозга кошки, электрическая эпидуральная стимуляция которых вызывает ходьбу задних конечностей в направлении вперед и назад.

2.Выявить распределение маркера с-Fos в пояснично-крестцовом утолщении спинного мозга кошки после локомоции задних конечностей в направлении вперед и назад, вызванной электрической эпидуральной стимуляцией.

3. Исследовать паттерны распределения интернейронов, маркированных разными кальций-связывающими белками.

Научная новизна работы.

Проведено подробное картирование спинного мозга кошки, позволившее выявить границы пояснично-крестцового утолщения, в пределах которых посредством электрической эпидуральной стимуляции возможен вызов ходьбы в направлении вперед и назад. В сером веществе пояснично-крестцовых сегментов впервые описано распределение локомоторных нейронных сетей, активируемых электрической эпидуральной стимуляцией и обеспечивающих ходьбу задних конечностей в направлении вперед и назад. На основе полученных данных и для их анализа был разработан новый метод деления серого вещества спинного мозга на функциональные зоны, алгоритм построения карт плотности иммунопозитивных разными маркерами. Впервые подробно описано ламинарное и региональное распределение нейронов, иммунопозитивных к кальций-связывающим белкам (кальбиндину, кальретинину и парвальбумину) в сегментах L1-S1 спинного мозга кошки.

Основные положения, выносимые на защиту.

1. Нейронные сети, обеспечивающие ходьбу задних конечностей в разных направлениях (вперед и назад), по-разному распределены вдоль рострокаудальной оси поясничнокрестцового утолщения спинного мозга.

2.Паттерн распределения интернейронов, экспрессирующих ген раннего ответа *c-fos* после эпидуральной стимуляции, определяется направлением вызванной локомоции.

3.Центромедиальная область серого вещества спинного мозга, характеризующаяся наибольшим числом нейронов, активируемых в ходе вызванной локомоции задних конечностей, содержит кластеры интернейронов, иммунопозитивных к кальцийсвязывающим белкам (кальбиндину, кальретинину и парвальбумину).

Теоретическая и практическая значимость работы.

Картирование пояснично-крестцового утолщения спинного мозга (сегменты L3-S1) посредством эпидуральной электрической стимуляции, позволило определить

зоны, электрическое воздействие на которые вызывает ходьбу в разных направлениях (вперед и назад), а также опосредует качество вызываемой ходьбы. Полученные данные могут быть использованы для создания наиболее оптимальной пространственной конфигурации расположения электродов в спинальных имплантах. Данная задача является актуальной, так как небольшие по размеру импланты обладают ограниченным пространством под отделенные друг от друга проводящие элементы и активные точки стимуляции.

С помощью иммуногистохимического метода выявления продукта экспрессии раннего гена *c-fos* визуализированы нейронные сети спинного мозга, участвующие в одном случае в реализации ходьбы вперед, а в другом – назад. Полученные данные расширяют имеющиеся представления об организации спинальных локомоторных сетей, и в совокупности с основными принципами локомоторного контроля могут быть перенесены и использованы в области современной робототехники и протезирования.

Подробным образом описано распределение в пояснично-крестцовом отделе спинного мозга трех наиболее изучаемых кальций-связывающих белков (кальбиндина, кальретинина и парвальбумина), тем самым выявлена посегментная и ламинарная локализация различных функциональных типов нейронов. Настоящая работа может быть использована в качестве отправной точки для определения основных морфологических свойств интересующих популяций спинальных нейронов.

Апробация работы.

Основные положения и результаты диссертации были представлены на 11 российских И международных конференциях: Ι научной конференции с международным участием, посвященной 70-летию Ярославской государственной медицинской академии (Ярославль, 2014); Neuronus 2015 IBRO&IRUNNeuroscienceForum (Poland, Krarow, 2015); всероссийской конференции с международным участием, посвященной 90-летию со дня основания Института физиологии им. И.П. Павлова РАН, (Санкт-Петербург – Колтуши, 2015); международной научной конференции Научного Парка СПбГУ «Трансляционная биомедицина: современные методы междисциплинарных исследований в аспекте внедрения в практическую медицину», (Санкт-Петербург, 2015); XII международной междисциплинарном конгрессе «Нейронаука для медицины и психологии» (Судак, 2016); VI всероссийской с международным участием конференции по управлению движениями «MotorControl-2016» (Казань, 2016); ІІ научной конференции с международным участием, посвященной 70-летию Ярославской государственной медицинской академии (Ярославль, 2016); FENSRegionalMeeting (Hungary, Pécs, 2017);

theXIXinternationalconferenceonneuroinformatics «Advancesinneuralcomputation, machinelearning, andcognitiveresearch, studiesincomputationalintelligence» (Russia, Moscow, 2017); XIII международной междисциплинарном конгрессе «Нейронаука для медицины и психологии» (Судак, 2017); XXIII съезде физиологического общества им. И.П. Павлова (Воронеж, 2017).

Публикации.

Основное содержание диссертации отражено в 20 публикациях, из них 5 научные статьи в рецензируемых журналах и 15 тезисов.

Структура и объем диссертации.

Диссертация состоит из введения, четырех глав (обзор литературы, материалы и методы, результаты, обсуждение), выводов и списка литературы. Работа изложена на 249 страницах печатного текста, содержит 6 таблиц и иллюстрирована 65 рисунком. В списке литературы приведено 564 источника.

Материал и методы исследования.

Исследование проведено на 17 нормально пигментированных беспородных взрослых кошках и 3 котятах. Постановка опытов осуществлялась на острой модели взрослого децеребрированного животного. Все хирургические процедуры проводили под общим наркозом (смесь изофлюрана (2-4%) и кислорода). Затем интубировали трахею, уровень анестезии поддерживали ингаляционно. Голову, позвоночник и таз фиксировали на жесткой раме стереотаксической установки. Посредством трепанации черепа и последующего удаления коры открывали доступ к четверохолмиям среднего мозга, после чего производили перерезку ствола на преколликулярнопостмаммиллярном уровне. Для остановки кровотечения после децеребрации в черепной коробке устанавливали плотную тампонаду. Для последующей эпидуральной стимуляцииспинного мозга производили ламинэктомию на уровне 4-5 поясничных позвонков.Последующиеэкспериментыначинали через 2-3 часа (период покоя). Для предотвращения развития отека воспалительных процессов, в течение всего эксперимента каждые 60 минут внутримышечно вводили по 0,5 мл преднизолона.

Вызов локомоции экспериментального животного осуществляли с помощью закрепленного на микроманипуляторе шарикового электрода (диаметр 0,5 мм), подключенного к стимулятору (A-M Systems, model 2100). Электрод устанавливали на твердую оболочку спинного мозга в область ламинэктомии. На уровне с пятого по седьмойпоясничный сегмент находили точку приложения электрода, при оптимальных параметрах стимуляции которым (частота стимуляции 5 Гц, длительность стимула 0,2-0,5 мс, сила тока 220-300 мкА) у животного вызывали поочередные шагательные

движения задних конечностей по ленте тредбана (скорость 0,5 м/с) в направлении вперед или назад.

Исследование спинальных нейронных сетей, задействованных в контроле локомоции в разных направлениях, проводили с помощью иммуногистохимического метода визуализации продукта экспрессии раннего гена *c-fos*. Экспериментальный протокол состоял из 18-22 стимуляционных сессий по 1-2 минуты, во время которых животное осуществляло шагательные движения по ленте тредбана. Период отдыха межу сессиями составлял 2-4 минуты. Общее время всех стимуляционных сессий и периодов между ними составляло 1,5-2 часа – оптимальное для достижения максимальной концентрации белка с-Fos в ядрах активных нейронов.

Регистрацию электрической активности мышц задних конечностей проводили биполярных электромиографических (ЭMГ) после имплантации электродов билатерально в икроножную мышцу (m. gastrocnemius lateralis, разгибательная мышца лодыжки) и большеберцовую мышцу (m. tibialis, сгибательная мышца голени). Сигналы от ЭМГ электродов были дифференциально усилены (A-M Systems, model 1700, с частотой пропускания 30 Гц-5 кГц), их дальнейший анализ проводили в программном комплексе MATLAB R2017b. Регистрацию силовых опорных реакции осуществляли с помощью сенсоров силовых нагрузок (1002K, VISHAY). располагаемых под лентой тредбана. Регистрацию кинематики движений проводили: 1) помощью потенциометров, прикрепленных к лодыжке экспериментального с животного, 2) посредством двусторонней видеорегистрации (стандартные видеокамеры, 25 кадр/сек) располагались сзади и сбоку).Анализ полученных видеозаписей осуществляли покадрово в программном комплексе VirtualDubMod 1.5.10.1, позволяющему выявлять угловые изменения в суставах задней конечности, возникающие при сгибании и разгибании бедра, колена и лодыжки в различные моменты локомоторного цикла – периоды переносы и опоры.

Через 15-20 минут после окончания эксперимента под глубоким наркозом (5% изофлюран) проводили транскардиальную перфузию. Для предупреждения свертываемости крови и образования тромбов за 10 минут до начала перфузии внутримышечно вводили гепарин (0,5 мл/кг). Промывку сосудов от форменных элементов крови осуществляли физиологическим раствором (0,9% натрия хлорид, 700-800 мл/кг, pH 7,4, 25°C), фиксацию – 4% раствором параформальдегида на 0,01 М фосфатном буфере (pH 7,4, 600-700 мл/кг, 25°C).

По окончании перфузии проводили анатомическое препарирование в ходе которого обеспечивали доступ к дорзальным корешкам и спинномозговым ганглиям,

по которым определяли границы сегментов, включающим корешковую часть и прилежащую к ней рострально бескорешковую. На основе данных о границах сегментов определяли точное положение ламинэктомии и точки приложения эпидурального электрода.

По выявленным границам сегментов производили транссекцию спинного мозга, и отдельные его элементы последовательно перемещали в 20% и 30% растворы сахарозы (на 0,1М фосфатном буфере) до насыщения (1-3 дня).На замораживающем микротоме(Reichert, Германия) готовили срезы толщиной 50 мкм.

Выявление продукта экспрессии гена *c-fos* и кальций-связывающих белков (кальбиндина, кальретинина и парвальбумина) осуществляли с помощью стандартного непрямого иммуногистохимического метода на фронтальных и горизонтальных свободноплавающих срезах сегментов L1-S1.

Цифровую обработку срезов антигенами проводили на компьютерной установке, оснащенной световым микроскопом Olympus CX31 (Olympus Corporation, Japan), программным комплексом digiCamControl и камерой Nikon (D3200, Nikon Corporation, Japan) и на компьютерной установке, оснащенной флуорисцентным микроскопом Olympus BX43 (Olympus Corporation, Japan), программным комплексом VideoZavr (версия 2.3) и черно-белой камерой (VideoZavr VZ-18C23-B). Морфологический анализ оцифрованных изображений срезов производили в программной среде ImageJ Fiji.

Для построения изображений, отражающих суммарный паттерн распределения иммунопозитивных нейронов в среде ImageJ Fiji каждый иммунопозитивный нейрон метили точкой фиксированного размера (20 пикселей), а границу между серым и белым веществом обрисовывали контуром. В дальнейшем, на основе положения реперных точек (области протрузии белого вещества в серое), оконтуренные изображения объединяли в одно (Total-изображение), получая суммарный паттерн сегментарного распределения иммунопозитивных нейронов. В программном комплексе ImageJ Fiji на Total-изображениях точки, маркирующие иммунопозитивные нейроны, размывали по методу Гаусса (диаметр 125 пикселей). Полученные черно-белые изображения переводили в псевдоцвет, где градиент зелено-красного маркировал плотность распределения нейронов, от минимального к максимальному, соответственно.

Для выявления в сером веществе областей колокализации нейронов, иммунопозитивных к разным маркерам, Total-изображения с черно-белым градиентом инвертировали по цветам и придавали бело-черному градиенту разные значения: красный – для FOS+ клеток, зеленый – для нейронов, иммунопозитивных к кальций-

связывающим белкам. Далее, на основе реперных точек два Total-изображения (чернокрасное и черно-зеленое) объединяли в одно, используя режим «перекрытия» слоев,получая таким образом черно-желтые градиентные изображения, отражающие зоны серого вещества, в которых наблюдается пересечение двух градиентов (красного и зеленого). Для получения зелено-красного градиента, отражающего степень перекрытия двух меток, черно-желтое изображение обесцвечивали, инвертировали цвета и придавали полученному черно-белому градиенту соответсвтвующие значения.

Обработку данных проводили с использованием пакета статистических программ Prism7 (GraphPad Software, Inc.) Статистический анализ данных проводили с помощьюнепараметрического критерия Стьюдента.

Результаты исследования.

Вызов локомоции в направлении вперед и назад при эпидуральной стимуляции различных пояснично-крестцовых сегментов спинного мозга. Для оценки способности вызова локомоции в направлениях вперед (XB) и назад (XH) при ЭС разных сегментов поясничного и крестцового отделов, провели картирование спинного мозга (L2-S2) (Рис. 1). При ЭС сегмента L2 у всех исследуемых животных (n=3) не наблюдалось инициации ходьбы ни в одном из направлений. ЭС сегмента L3 у 67% животных (n=3) вызывала локомоцию вперед, но ни у одного – ходьбу назад. ЭС сегментов L4 (n=7), L5 (n=12), L6 (n=10), L7 (n=8), S1 (n=5) и S2 (n=3) вызывала локомоцию вперед у всех тестируемых кошек. Однако, стимуляция сегментов L4, S1 и S2 не инициировала локомоцию назад ни у одного из животных. Ходьба назад была выявлена только при ЭС сегментов L5 (каудальной части)-L7. В сегменте L5 стимуляция вызывала ходьбу назад у 40%, животных (n=5). Стимуляция ростральной части сегмента L6 вызывала ходьбу назад у 50% животных (n=6), средней – у 67% (n=6) и каудальной – у 86% (n=7). Стимуляция ростральной части сегмента L7 вызывала ходьбу назад только у 29% кошек (n=7), а каудальной – у 20% (n=5). Таким образом, область спинного мозга, ЭС которой вызывает оба вида ходьбы (XB и XH), занимает достаточно узкую часть пояснично-крестцового отдела (сегменты L5-L7).

Рис. 1. Картирование спинного мозга. По оси ординат – процентное выражение числа животных, ЭС спинного мозга которых в обозначенном сегменте вызывала ходьбу

вперед (красная линия) и назад (синяя линия), по оси абсцисс — номера сегментов спинного мозга.

Впервые инициация ходьбы у кошки, вызванная посредством ЭС спинного мозга, была продемонстрирована Т. Iwahara с коллегами в 1992. В своей работе они описывают возможность запуска ХВ задних конечностей стимуляцией любого из сегментов L1-S1, но не более каудальных. В нашей работе мы определили, что у децеребрированной кошки активация ХВ возникает при стимуляции сходного, но несколько смещённого каудально более узкого участка спинного мозга – сегментов L3-S2. Этот сдвиг может быть объяснён, с одной стороны, особенностями стимуляции, с другой, разными подходами в определении границ сегментов, которые априори дают несколько разные результаты

Особенности кинематики локомоторных движений при ходьбе в разных направлениях, вызванной эпидуральной стимуляцией различных поясничнокрестцовых сегментов спинного мозга. Мы провели сравнение кинематических особенностей локомоторных движений при ХВ, вызванной ЭС на трех уровнях спинного мозга: сегментах L4-L5, L6 и L7-S1; анализ кинематики локомоторных движений во время ХН проводили только при стимуляции L6 сегмента (оптимального для вызова ХН).

В Таблица 1для XB отображены средние значения углов в тазобедренном, коленном и голеностопном суставах при максимальном сгибании задней конечности во время фазы переноса и максимальном разгибании во время фазы опоры. Так, было выявлено, что в зависимости от точки стимуляции спинного мозга кинематические характеристики ходьбы значительно варьируют. Наименьшие значения углов во всех трех суставах наблюдаются при ЭС сегментов L4-L5. При стимуляции сегмента L6 исследуемые показатели несколько выше. Наибольшая амплитуда движений конечности была выявлена при ЭС сегментов L7-S1. Полученные данные позволяют предположить, что при ЭС ростральных сегментов (L4-L5) преобладает активность мышц сгибателей, а при стимуляции каудальных (L7-S1) – активность мышц разгибателей. Поскольку в ростральных и каудальных сегментах поясничного утолщения преобладают мотонейронные пулы, иннервирующие мышцы сгибатели и разгибатели, соответственно (Vanderhorst, Holstege, 1997), вероятно, ЭС определенного сегмента не только активирует локомоторные сети, но и повышает возбудимость мотонейронов, локализованных вблизи точки стимуляции.

Вне зависимости от уровня ЭС средние значения длины шага при вызванной ХВ одинаковы (Рис.2А). При стимуляции сегментов L7-S1 средние значения углов в суставах значительно больше, чем при стимуляции сегментов L4-L5 (Рис.2 В). Стабильность локомоторных движений задних конечностей при ЭС сегментов L4-S1 достаточно высока, однако при стимуляции сегмента L6 она достоверно ниже (р=0,04) (Рис.2 Б). Среднее значение коэффициента асимметрии длины шага низкое при ЭС каждого уровня спинного мозга, что говорит об одинаковой длине шага задних конечностей и симметричности локомоторных движений в целом (Рис.2 Г).

Таблица 1. Значения углов в суставах задних конечностей при максимальном сгибании во время фазы переноса и максимальном разгибании во время фазы опоры. Представлены средние значения углов (°) ± стандартная ошибка.

Фаза	Сустав	ЭС	К1	К2	К3	К4
Перенос	Тазобедренный сустав	L4-L5	$36,6\pm0,4$	$32,2\pm0,3$	$53,4\pm0,6$	$\textbf{32,8} \pm \textbf{0,9}$
		L6	$43,5\pm0,2$	$37,1 \pm 0,5$	$57,5 \pm 1$	$\textbf{38,9} \pm \textbf{0,8}$
		L7-S1	$41,5 \pm 0,6^{***}$	$40,8 \pm 0,3***$	61,4 ± 1***	$40,9 \pm 0,7***$
	Коленный сустав	L4-L5	$35{,}9\pm0{,}6$	$36,4 \pm 1,1$	$55{,}4\pm0{,}9$	$37{,}9\pm0{,}4$
		L6	$\textbf{38,8} \pm \textbf{0,9}$	$38,2 \pm 0,4$	$56,1\pm0,3$	47 ± 1
		L7-S1	$40,3 \pm 0,5***$	$40,8 \pm 0,2**$	$60,6 \pm 2*$	$50 \pm 1,4***$
	Голеностопный сустав	L4-L5	$42,5 \pm 1,2$	$44,7 \pm 1$	$73,4 \pm 0,7$	$\textbf{34,6} \pm \textbf{0,4}$
		L6	$58 \pm 1,4$	$46,7\pm0,7$	$76,3 \pm 1,8$	$42,\!4\pm0,\!6$
		L7-S1	$45,6 \pm 1,1*$	$52,3 \pm 1,3***$	$82,7 \pm 1,5^{***}$	$44,2 \pm 0,3***$
Перенос	Тазобедренный	L4-L5	$85,7\pm0,4$	$94,8\pm0,6$	$102, 1 \pm 0, 8$	$74,2 \pm 0,4$
		L6	$93,7\pm0,7$	$105,4\pm0,8$	$112,3 \pm 1$	$80,1\pm0,7$
	Сустав	L7-S1	$100,4 \pm 0,3***$	$122,3 \pm 1***$	$118,7 \pm 0,8***$	$107,5 \pm 1,2***$
Опора	Коленный сустав	L4-L5	$87 \pm 0,4$	$96,4 \pm 0,3$	$107{,}9\pm0{,}7$	$64,8 \pm 0,3$
		L6	$92,7 \pm 1,7$	$117,3\pm0,5$	$120,1\pm0,7$	$80,9\pm0,5$
		L7-S1	$105,2 \pm 0,7***$	$126,2 \pm 0,4 ***$	$121,8 \pm 0,8^{***}$	$104,9 \pm 0,5***$
	Голеностопный сустав	L4-L5	$133,2 \pm 1,2$	$155,3 \pm 2,7$	$124 \pm 0,6$	$122\pm0,\!5$
		L6	$138,7\pm1,5$	$172 \pm 0,7$	$135,6 \pm 1$	$126 \pm 1,4$
		L7-S1	$138,2 \pm 0,4 ***$	$179,4 \pm 2,7***$	$143,9 \pm 0,8^{***}$	$134,7 \pm 07***$

Звездочками обозначена значимость различий межу параметрами XB при ЭС сегментов L4-L5 и L7-S1: * - p < 0.05; ** - p < 0.01; *** - p < 0.001.

При XH во время фаз переноса и опоры задние конечности выполняли движения в противоположном направлении относительно XB (Рис. 3). Так, во время фазы опоры, конечность двигалась из крайней постериорной позиции (E1) в крайнюю антериорную (E3). Во время фазы переноса конечность возвращалась в крайнюю постериорную позицию (E1). В отличие от XB, при XH локомоторные движения выполнялись задними конечностями в более ростральной позиции относительно тела.

Сравнение величин суставных углов при ХВ и ХН, вызванных из одного сегмента (L6), показало, что средние значения углов в тазобедренном и голеностопном суставах в фазе переноса одинаковы для ХВ и ХН при стимуляции сегмента L6, в коленном – значительно выше (p=0,002)для ХН (Puc.2 Д). Во время фазы переноса

средние значения углов в тазобедренном и голеностопном суставах при ХН значительно ниже, чем при ХВ (p=0,002), а в коленном – выше(Puc.2E).Также было показано, что при ХН диапазон значений углов в суставах в ходе локомоторного цикла значительно ниже (p=0,0001) и, как результат, длина шага значительно короче (p=0,036) по сравнению с ХВ при ЭС L6 (Puc.2 A, B). Одним из важнейших афферентных сигналов, участвующих в запуске фазы переноса во время ХВ является активация мышечных веретен мышц сгибателей бедра во время фазы опоры (Rossignol et al., 2006). Полагаем, что во время ХН афферентные сигналы о сгибании бедра (от мышечных веретен разгибателей бедра) в конце фазы опоры могут участвовать в инициации фазы переноса.

Рис.2. Сравнение кинематических характеристик между XB, вызванной ЭС разных уровней спинного мозга (L4-L5, L6, L7-S1), и XH. A – длина шага; Б – стабильность локомоторного паттерна конечности (коэффициент самоподобия); B – диапазон углов в суставах задних конечностей во время локомоторного цикла; Γ – асимметрия в длине шага между правой и левой конечностью (коэффициент асимметрии); Д – значения углов в тазобедренном, коленном и голеностопном суставах при максимальном сгибании задней конечности во время фазы переноса; E – значения углов в тазобедренном, коленном и голеностопном суставах при задней конечностью (коэффициент асимлальном сгибании задней конечности во время фазы переноса; E – значения углов в тазобедренном, коленном суставах при максимальном сгибании задней конечности во время фазы переноса; E – значения углов в тазобедренном, коленном и голеностопном суставах при лаксимальном сгибании задней конечности во время фазы переноса; E – значения углов в тазобедренном, коленном и голеностопном суставах при лаксимальном сгибании задней конечности во время разгибании во время фазы опоры. Представлены средние значения + стандартная ошибка. * – p<0,05; *** – p<0,001.

Рис. 3. Положения суставов задних конечностей в разные фазы локомоторного цикла (E1, E2, E3, F) при XB и XH. Стрелками обозначено направление движения конечности.

Таким образом, мотонейронные пулы, иннервирующие мышцы разгибатели, и афференты от них могут представлять собой элементы сетей, определяющих движение шага в горизонтальной плоскости при XH (Musienko et al., 2012). Данные элементы содержатся в сегментах L6-L7, стимуляция которых вызывает XH (Hamm et al., 1985; Vanderhorst, Holstege, 1997).

Стабильность локомоторных движений и симметричность в длине шага между левой и правой лапами задних конечностей при XH ниже, чем при XB (Рис.2 Б, Г).Данные результаты с одной стороны могут быть объяснены спецификой мышечного аппарата, для которого не характерны формируемые паттерны, с другой – слабым развитием локомоторных сетей, контролирующих ходьбу назад.

Распределение с-Fos-иммунопозитивных (**FOS**+) нейронов ПО функциональным областям серого вещества при вызванной ходьбе в разных направлениях.С помощью модифицированного метода геометрического деления серого вещества (Рис. 4 Аадаптирован по Matsushita, 1970) были проанализированы поперечные срезы спинного мозга животных с вызванной XB (n=3) и XH (n=3) после иммуногистохимического выявления белка с-Fos (Рис. 4Б). Подсчет FOS+ нейронов осуществлялис левой и правой половины серого вещества в каждой из 6 зон интереса: дорзолатеральной(ДЛ), дорзомедиальной центролатеральной(ЦЛ), (ДМ), центромедиальной (ЦМ), вентролатеральной (ВЛ) и вентромедиальной (ВМ).

Процентное распределение FOS+ нейронов в каждой из 6 зон интереса по сегментам L4-S1 у животных обеих групп схоже (Рис. 4 В).Наибольшая доля FOS+ нейронов приходится на зоны их кластеризации – ДЛ и ЦМ (соответственно, $31\pm9\%$ и $21\pm4\%$ для XB, $28\pm7\%$ и $23\pm8\%$ для XH). Зоны ДМ и ЦЛ содержат меньшее количество FOS+ нейронов – соответственно, $18\pm9\%$ и $21\pm4\%$ для XB и $13\pm6\%$ и $23\pm8\%$ для XH. Меньше всего клеток представлено в вентральной части серого вещества – ВМ и ВЛ (соответственно, $7\pm4\%$ и $9\pm5\%$ для XB, $7\pm4\%$ и $11\pm5\%$ для XH). У животных группы

ХН в сегментах L6 и L7 количество FOS+ нейронов в зонах ЦЛ (p=0,019; p=0,036), ЦМ (p=0,042; p=0,002) и ВЛ (p=0,031; p=0,007) значительно выше, чем у кошек группы ХН. Также, у ХН животных значительно больше FOS+ нейронов в зонах ДЛ (p=0,001) и ВМ (p=0,005) в сегменте L6. Таким образом, было выявлено, что участок спинного мозга (L6-L7), с которого ЭС вызывается ходьба назад, содержит значительно больше FOS+ нейронов.

Рис. 4. Распределение FOS+ нейронов в сером вещества сегментов L4-S1. A – модифицированный алгоритм деления серого вещества на зоны интереса; E – среднее процентное число FOS+ нейронов в зонах интереса у животных групп XB и XH; B – среднее число FOS+ нейронов в каждой зоне интереса серого вещества. Для всех графиков представлены среднее значение + стандартное отклонение, по оси ординат – процентное (A) и абсолютное (B) число FOS+ нейронов, по оси абсцисс – зоны интереса (A) и номера сегментов (Б). * - p < 0.05; ** - p < 0.01; *** - p < 0.001.

Ранее (Musienko et al., 2012) была предложена гипотеза о контроле направления шага: локомоторная система включает в себя два основных механизма, один генерирует вертикальный компонент шага (поднятие и опускание конечности), другой – горизонтальный компонент (перенос конечности от одной точки к другой). Последний включает в себя сети, управляющие направлением шага в разные стороны (вперед, назад, влево, вправо). Данные сети получают сенсорную информацию о движении конечности во время фазы опоры – при достижении конечностью крайней

точки запускается фаза переноса (Pearson, Duysens, 1976).В рамках двухуровневой модели локомоторного ЦГП (Rybak et al., 2015), можно предположить, что вертикальный компонент включает в себя ритм-генерирующий уровень и часть паттерн-генерирующего, в то время как сети горизонтального компонента принадлежат к паттерн-образующему слою. Объединив данные, полученные при картировании спинного мозга ЭС и при выявлении активированных нейронных сетей путем визуализации белка c-Fos, мы полагаем, что сети, генерирующие горизонтальный компонент для ХВ распределены по всему пояснично-крестцовому утолщению спинного мозга, в то время как для XH – только в сегментах L6-L7. Таким образом, для активации ХН, ЭС должна быть приложена к сегментам L6-L7, в то время как широко распространенные сети, генерирующие вертикальный и горизонтальный компонент ХВ могут быть активированы ЭС любого сегмента от L3 до S2. При этом, сети, генерирующие вертикальный компонент для обоих видов ходьбы распространены в пояснично-крестцовом утолщении достаточно широко. Данное предположение может объяснить схожий паттерн распределения FOS+ нейронов при XB и XH. Так, FOS+ нейроны, генерирующие горизонтальный компонент для ХВ, распределены по всему пояснично-крестцовому отделу спинного мозга, а совокупность нейронов, генерирующих горизонтальный компонент для XH, сконцентрирована только в L6-L7, в связи с чем число FOS+ нейронов в этих сегментах значительно выше, чем у животных с ХВ.

Распределение нейронов, иммунопозитивных к кальций-связывающим белкам.Спинальный контроль локомоции обеспечивается разнородной популяцией интернейронов серого вещества (Kiehn, 2006). В настоящем исследовании по выявлению FOS+ нейронов было установлено, что при локомоции, вызванной ЭС, специфические сети нейронов активируются во всех областях серого вещества. Однако, вопрос о том, какие именно типы интернейронов формируют сети, способные обеспечивать локомоторную активность и ее модуляцию, остается открытым. Интернейроны, экспрессирующие специфические кальций-связывающие белки имеют разные паттерны электрической активности (Hof, Nimchinsky, 1992; Heizmann, 1993; Baizer, Baker, 2005), что определяет их функциональные особенности, поэтому иммуногистохимический метод может быть использован для визуализации функционально разных типов интернейронов. В связи с этим, мы провели выявление нейронов, иммунопозитивных к парвальбумину (ПРВ+), кальбиндину (КЛБ+) и кальретинину (КЛР+), и дали детальное описание ламинарного и регионального

распределения ПРВ+, КЛБ+ и КЛР+ нейронов серого вещества спинного мозга (сегменты L1-S1).

Кальбиндин. КЛБ+ нейроны представлены преимущественно в дорзальных рогах (пластины I-III) мелкими веретеновидными клетками, однако, в остальных пластинах было выявлено еще 10 морфотипов одиночных или сгруппированных в кластеры нейронов, иммунопозитивных к кальбиндину (Таблица 4). Наибольший интерес представили два специфических кластера клеток, локализованных на границе пластин VIи VII (в зонах ЦМ и ЦЛ) Медиально расположенный кластер состоит из средних по размеру КЛБ+ нейронов (126±36 мкм², n=45), у которых наблюдается слабое ветвление дендритов (Рис. 5 А, м). Латеральный кластер сформирован более крупными клетками (184±60 мкм², n=56), обладающими длинными дендритами (Рис. 5 А, н).При сопоставлении карт плотности КЛБ+ и FOS+ нейронов, было выявлено, что высокая степень колокализации между ними во всех анализируемых сегментах (L4-S1) помимо дорзальных рогов наблюдается только на границе между пластинами VI и VII в медиальной части промежуточного серого вещества (Рис. 5Б).

Рис. 5. Распределение КЛБ+ нейронов. А – локализация медиального и латерального кластеров нейронов на границе пластин VI и VIII; Б – сопоставление карт плотности КЛБ+ и FOS+ нейронов на примере сегмента L7 (зелено-красный градиент отражает степень колокализации разных маркеров от минимального к максимальному, соответственно).

В работах Е. Jankowska с коллегами (1967 а, б), выполненных на спинальных кошках, в данной зоне были выявлены скопления интернейронов по-разному активируемые в ответ на стимуляцию афферентов сгибательного рефлекса. Данные типы интернейронов могут быть элементами локомоторного ЦГП, обеспечивающими реципрокные взаимодействия между мотонейронами антагонистами (Jankowskaetal., 1967 б). У мышей схожими функциями обладает часть нейроновэмбрионального класса

V0, локализованная в медиальной части промежуточного серого вещества (Griener et al., 2015). Данные клетки имеют моносинаптические контакты с мотонейронами контралатеральной половины спинного мозга, благодаря чему участвуют в координации движений между левой и правой конечностью (Lanuza et al., 2004). Также у мышей на границе пластин VI, VIIи Хвыявлена часть клеток V3 класса, связанные с формированием устойчивого и сбалансированного моторного ритма, обеспечивающего симметричность движения левой и правой конечностей (Zhang et al., 2008).В работе J.S. Riddell и М. Hadian (2000), в обозначенной области серого вещества сегментов L6-L7 спинного мозга кошки были выявлены скопления интернейронов, на которых сходится афферентная информация от мышечных афферентов группы II.

Таблица 2. Усредненная по всем животным и сегментам площадь сомы КЛБ+ нейронов (мкм² \pm стандартное отклонение). Мелкие нейроны – площадь сомы <200 мкм², средние нейроны – площадь сомы 200-450 мкм², крупные нейроны – площадь сомы >450 мкм².

Пластины	Сегменты	Особенности локализации	Тип нейронов	Площадь, мкм ²
Пластина I	L1-S1		Мелкие треугольные Мелкие овальные Мелкие веретеновидные	172±55 (n=56)
Пластины II-III	L1-S1	Вдоль кривизны дорзального рога	Мелкие веретеновидные	28±14 (n=2920)
		Дорзальная часть пластины IV	Мелкие веретеновидные	30±20 (n=400)
Пластины IV-VI	L1-S1	Вдоль медиальной границы дорзального рога Вдоль латеральной границы дорзального рога Мелкие мультиполярные В центральной части серого вещества на границе пластин IV-V		138±65 (n=175)
Пластины VII	L1-L4	Дорзолатеральная граница пластины VII	Мелкие и средние мультиполярные	147±56 (n=97)
	L1-S1	На границе пластин VI, VII и X В латеральной части на границе пластин VI и VII	Мелкие мультиполярные Средние мультиполярные	126 ± 36 (n=45) 184 ± 60 (n=56)
	L5-L7	Вентральная часть пластины VII	Средние веретеновидные и мультиполярные	157±36 (n=17)
Пластина VIII	L5-S1	В пластине VIII На медиальной границе с белым веществом В вентральной комиссуре	Средние веретеновидные и мультиполярные	238±46 (n=32)
Пластина Х	L7-S1		Мелкие веретеновидные	· <u>····································</u>

Парвальбумин. Среди ПРВ+ нейронов было выявлено 6 мофотипов клеток (Таблица 3),локализованных во всех пластинах серого вещества кроме IXи X. Наибольший интерес представили скопления нейронов вентромедиальной части пластин V-VI в сегментах L5-S1 (Рис. 6 А, н) (в значительной степени колокализующихся с FOS+ нейронами, Рис. 6Б), положение которых сходно с таковым ядер Кларка, находящихся в более ростральных сегментах (L1-L4) и

характеризующихся ярко-окрашенным ПРВ+нейропилем (Рис. 6 А. м).Ядра Кларка исторически полагаются основным источником дорзального спиномозжечкового тракта, передающего сенсорную информацию от проприорецепторов задней части туловища и задних конечностей в мозжечок. Мы предположили, что кластеры ПРВ+ нейронов пластин V-VI в сегментах L5-S1, будучигомологичными ядрам Кларка, также могут являться элементами общей спинальной проприоцептивной системы, в связи с чем было дополнительно проведено картирование ПРВ+ нейронов в пределах всего пояснично-крестцового отдела спинного мозга у новорождённых котят (n=2).Во всех исследуемых сегментах (L1-S1) спинного мозга новорожденных животных ПРВ+ нейропиль чётко обособлен в виде округлого образования, сосредоточенного в дорзомедиальной области промежуточного серого вещества. Вне зависимости от сегмента, форма и локализация этой области сходны с таковыми у ядер Кларка. В отличие от взрослых животных, у котят не выявлено снижения иммунореактивности в более каудальных сегментах.Напротив, на всем протяжении поясничного отдела иммунопозитивный нейропиль мощно развит за счет толстых ПРВ+ волокон, приходящих с дорзальной поверхности и следующих в вентральные рога. Полагаем, что проприоцептивные нейроны изначально закладываются в спинном мозге в виде единой системы, охватывающей весь поясничный отдел. Дальнейшее ее разбиение на подсистемы, по-видимому, связано с усложнением в ходе онтогенеза двигательных паттернов животного, для чего необходим более тонкий контроль со стороны нервной системы, и как следствие развитие мото- и интернейронного аппарата. В результате этого в пределах поясничного отдела происходит разделение общей проприоцептивной системы на морфологически различные составляющие: 1) ядра Кларка, локализующиеся в сегментах L1-L4 и 2) группы проприоцептивных нейронов сегментов L5-S1.

Таблица 3. Усредненная по всем животным и сегментам площадь сомы ΠPB + нейронов (мкм² ± стандартное отклонение). Мелкие нейроны – площадь сомы <200 мкм², средние нейроны – площадь сомы 200-450 мкм², крупные нейроны – площадь сомы >450 мкм².

Пластины	Сегменты	Особенности локализации	Тип нейронов	Площадь, мкм ²
II	1.6.01		Manual and an and a	42±4
Пластина 1	L0-51		мелкие овальные	(n=124)
Пластины II-III	L1-S1		Мелкие овальные	28±10
				(n=1479)
-	1114		M	61±24
	LI-L4	На границе пластин VI, VII и Х	мелкие овальные	(n=151)
TT	T C O1		Мелкие мультиполярные	93±40
Пластины IV-VI				(n=1018)
L5-S1	L3-81	На границе пластин VI, VII и Х	Мелкие овальные Мелкие овальные Мелкие овальные Мелкие овальные Мелкие мультиполярные Средние мультиполярные Мелкие/средние мультиполярные Мелкие мультиполярные Мелкие мультиполярные Мелкие мультиполярные Мелкие мультиполярные	283±91
				(n=114)
	11.01	D	Мелкие/средние	168±111
Пластина VII	L1-51	Вентральная часть пластины VII	мультиполярные	(n=254)
Пластины VIII	—— Мелкие мультиполярн L1-S1 —— Средние мультиполярн		Мелкие мультиполярные	154±32
				(n=539)
			C	379±149
		Средние мультиполярные	(n=1305)	

Рис. 6. Распределение ПРВ+ нейронов. А – локализация ПРВ+ нейронов в медиальной части пластин V-VI; Б – сопоставление карт плотности ПРВ+ и FOS+ нейронов на примере сегмента L7 (зелено-красный градиент отражает степень колокализации разных маркеров от минимального к максимальному, соответственно).

Кальретинин. КЛР+ нейроны представлены в сером веществезначительно шире: 20 морфотипами (Таблица 4). При этом распределение данных нейронов менее упорядочено, в связи с чем, специфических скоплений (как для кальбиндина и парвальбумина) выявлено не было (Рис. 7 А). При сопоставлении карт плотности данных нейронов с картами плотности FOS+ нейронов наибольшее пересечение помимо дорзальных рогов выявляется в медиальной части пластин Vи VI (Рис. 7Б) – схожей области колокализации ПРВ+ и FOS+ нейронов.Согласно работе Y. Fu и коллег (2012), у мышей кальретинин метит 42% нейронов ядер Кларка и 33% – нейронов каудально расположенных поясничных прецеребеллярных ядер. Таким образом, некоторые выявленные в настоящем исследовании КЛР+ нейроны также как ПРВ+ могут участвовать в работе проприоцептивной системы.

Рис. 7. Распределение КЛР+ нейронов. А – локализация КЛР+ нейронов в сером веществе спинного мозга; Б – сопоставление карт плотности КЛР+ и FOS+ нейронов на примере сегмента L7 (зелено-красный градиент отражает степень колокализации разных маркеров от минимального к максимальному, соответственно).

Таблица 4. Усредненная по всем животным и сегментам площадь сомы KЛP+ нейронов (мкм² ± стандартное отклонение). Мелкие нейроны – площадь сомы <200 мкм², средние нейроны – площадь сомы 200-450 мкм², крупные нейроны – площадь сомы >450 мкм².

Пластины	Сегменты	Особенности локализации	Тип нейронов	Площадь, мкм ²
	11.51	В мелиальной половине пластины І	Menure peretenopulatie	108±69
	LI-SI	В меднальной половине пластины г	мелкие веретеновидные	(n=142)
Плостина I	11.01	В области тракта Лиссауара	Menure openiulie	92±58
Пластина т	L1-51	В области тракта этиссаузра	мелкие овальные	(n=126)
	L1-S1	На латеральной поверхности	Средние мультиполярные	252±126
		дорзального рога		(n=69)
Плостини II III	T 1 S1	Произализатронно в населино И		42±21
пластины п-пп	L1-51	преимущественно в пластине п	мелкие округлые	(n=2898)
	L1-S1		Menvue penereuopunutie	82±45
	L1-51		мелкие веретеновидные	(n=219)
Плостина IV	T 1 C1		Manura and munaness	79±35
Пластина ту	L1-51		мелкие мультиполярные	(n=298)
	I 1 S1		C	393±186
	L1-51		Средние мультиполярные	(n=47)
	L1-L4	He province direction VI VII of V	Manuna paparananunu sa	80±49
		на границе пластин VI, VII и Х	мелкие веретеновидные	(n=828)
	L1-S1		Manuta apartituta	85±49
		В медиальной части пластин v-v1	мелкие овальные	(n=151)
Harrison V VI	L1-S1	Латеральная граница пластины V	Средние мультиполярные	260±144
Пластины v-v1		с белым веществом		(n=54)
	L1-S1		Мелкие мультиполярные	115±52
				(n=526)
	L1-S1		IC	439±213
			Крупные мультиполярные	(n=132)
	T 1 T 4	Дорзолатеральная граница	Мелкие и средние	153±76
	L1-L4	пластины VII	мультиполярные	(n=627)
	L6-L7		Ma	125±31
			мелкие овальные	(n=42)
		На границе пластин VI и VII	Мелкие и средние	209±51
			треугольные	(n=38)
	L1-S1			140±38
Пластины VII-VIII			Мелкие мультиполярные	(n=1550)
	L1-S1		0	300±68
			Средние мультиполярные	(n=2041)
	L1-S1			771±364
			Крупные мультиполярные	(n=1279)
	L5-L7	D	Средние веретеновидные и	160±46
		вентральная часть пластины VII	мультиполярные	(n=81)
	T 1 C1			82±38
Пластина Х	L1-81		Мелкие овальные	(n=341)

Выводы.

1. В ходе электрофизиологического картирования установлено, что нейронные сети кошки, обеспечивающие ходьбу задних конечностей в направлении вперёд, распространены в спинном мозге от сегмента L3 до сегмента S2. При этом нейронные сети, обеспечивающие ходьбу в направлении назад, распространены в значительно более узкой области: в сегментах L5-L7.

2. Исследование паттернов распределения нейронов, экспрессирующих ген раннего ответа *c-fos* во время вызванной эпидуральной стимуляцией ходьбой в разных

направлениях выявило отличия между ними: большее число активированных клеток в промежуточном сером веществе сегментов L6 и L7 во время ходьбы назад.

3. В промежуточном сером веществе спинного мозга выявлены близко расположенные скопления интернейронов нескольких типов, экспрессирующих кальций-связывающие белки кальбиндин, парвальбумин и кальретинин. Пространственная локализация этих скоплений совпадает с локусом промежуточного серого вещества, содержащей наибольшее число нейронов, активируемых в ходе вызванной локомоции.

Список работ, опубликованных по теме диссертации. Статьи:

1. Меркульева Н.С., Михалкин А.А., **Вещицкий А.А.** Особенности распределения ацетилхолинэстеразы в заднелатеральном ядре таламуса кошки // Морфология. – 2015. – Т. 148. – №. 4. – С. 46–48.

2. Merkulyeva N., **Veshchitskii A.**, Makarov F., Gerasimenko Y., Musienko P. Distribution of 28 kDa calbindin-immunopositive neurons in the cat spinal cord // Frontiers in neuroanatomy. -2016. - Vol. 9. - No. 166. - P. 1–13.

3. Ляховецкий В.А. Меркульева Н.С., **Вещицкий А.А.**, Герасименко Ю.П., Мусиенко П.Е. Математическая модель управления задними конечностями кошки при ходьбе назад // Биофизика. – 2016. – Т. 61. – №. 5. – С. 1001–1009.

4. Меркульева Н.С., **Вещицкий А.А.**, Шкорбатова П.Ю., Шенкман Б.С., Мусиенко П.Е., Макаров Ф.Н. Морфометрические особенности ядра Кларка в ростральных сегментах поясничного отдела спинного мозга кошки // Морфология. – 2016. – Т. 150. – № 5. – С. 18–23.

5. Merkulyeva N., **Veshchitskii A.**, Gorsky O., Pavlova N., Zelenin P., Gerasimenko Y., Deliagina T., Musienko P. Distribution of spinal neuronal networks controlling forward and backward locomotion // Journal of neuroscience. – 2018. – P. 2951–17.

Тезисы:

1. Вещицкий А.А., Михалкин А.А. Экспрессия ацетилхолинэстеразы в LP ядрах таламуса мозга 2-недельных котят. Современные проблемы нейробиологии // Материалы I научной конференции с международным участием, посвященной 70-летию Ярославскойгосударственноймедицинскойакадемии, Ярославль. – 2014. – С. 11.

2. Mikhalkin A., Nikitina N., **Veschitskiy A.**, Merkulyeva N. Expression of the heavychain neurofilament proteins in the lateral geniculate nucleus of the cat // Neuronus 2015 IBRO & IRUN neuroscience forum, Poland, Krarow. – 2015. – P. 116.

3. Вещицкий А.А., Меркульева Н.С., Мусиенко П. Е. Популяция кальбиндиновых интернейронов серого вещества спинного мозга кошки // Современные проблемы физиологии высшей нервной деятельности, сенсорных и висцеральных систем. Материалы всероссийской конференции с международным участием, посвященная 90-летию со дня основания Института физиологии им. И.П. Павлова РАН, Санкт-Петербург – Колтуши. – 2015. – С. 42.

4. Вещицкий А.А., Меркульева Н. С., Мусиенко П. Е. Распределение кальбиндиниммунопозитивных нейронов в спинном мозге кошки // Материалы международной научной конференции Научного Парка СПбГУ «Трансляционная биомедицина: современные методы междисциплинарных исследований в аспекте внедрения в практическую медицину», Санкт-Петербург. – 2015. – С. 29.

5. **Вещицкий А.А.**, Меркульева Н. С., Мусиенко П. Е. Кластерная организация кальбиндин-иммунопозитивных нейронов спинного мозга кошки. Материалы XII международного междисциплинарного конгресса «Нейронаука для медицины и психологии», Судак. – 2016. – С. 111.

6. Меркульева Н.С., **Вещицкий А.А.**, Герасименко Ю. П., Мусиенко П.Е. Локализация нейронов спинного мозга кошки, активирующихся при вызванной локомоции // Материалы XII международного междисциплинарного конгресса «Нейронаука для медицины и психологии», Судак. – 2016. – С. 276.

7. Меркульева Н.С., **Вещицкий А.А.**, Герасименко Ю. П., Мусиенко П.Е. Распределение с-fos-иммунопозитивных нейронов в спинном мозге децеребрированных кошек при вызванной локомоции // Материалы VI всероссийской с международным участием конференции по управлению движениями «Motor Control-2016», Казань. – 2016. – С. 61.

8. Меркульева Н.С., **Вещицкий А.А.**, Мусиенко П.Е. Иммуногистохимическое исследование локализации кальбиндиновых интернейронов в люмбосакральном отделе спинного мозга кошки // Материалы II научной конференции с международным участием, посвященной 70-летию Ярославской государственной медицинской академии, Ярославль. – 2016. – С. 31.

9. Павлова Н.В., Баженова Е.Ю., Меркульева Н.С., **Вещицкий А.А.**, Шкорбатова П.Ю, Мусиенко П.Е. Цитохимические особенности нейронов ядра Кларка спинного мозга кошки // Материалы II научной конференции с международным участием, посвященной 70-летию Ярославскойгосударственноймедицинскойакадемии, Ярославль. – 2016. – С. 38.

10. Merkulyeva N., **Veshchitskii A.**, Lyakhovetskii V., Musienko P. Relationships between the pattern of the c-fos-positive neurons and locomotion hindquaters properties in cats // FENS Regional Meeting, Hungary, Pécs. – 2017.

11. Fomin I., Mikhailov V., Bakhshiev A., Merkulyeva N., **Veshchitskii A.**, Musienko P. Detection of neurons on images of the histological slices using convolutional neural network // Selected papers from the XIX international conference on neuroinformatics «Advances in neural computation, machine learning, and cognitive research, studies in computational intelligence», Russia, Moscow. -2017. -P. 85.

12. **Veshchitskii A.**, Merkulyeva N., Gorsky O., Musienko P. Analysis of spinal neuronal networks controlling forward and backward locomotion // FENS Regional Meeting, Hungary, Pécs. – 2017.

13. Баженова Е.Ю., Меркульева Н.С., **Вещицкий А.А.**, Горский О.В., Павлова Н.С., Мусиенко П.Е. Исследование спинальных механизмов соматовисцеральной интеграции локомоторной и мочевыдельной систем // Материалы XIII международного междисциплинарного конгресса «Нейронаука для медицины и психологии», Судак. – 2017. – С. 78.

14. Баженова Е.У., Меркульева Н.С., **Вещицкий А.А.**, Горский О.В., Павлова Н.В., Мусиенко П.Е. Distribution of c-fos positive neurons in the sacral spinal segments of the cat stepping in different directions // Материалы XXIII съезда физиологического общества им. И.П. Павлова, Воронеж. – 2017. – С. 1628.

15. Попов А.А. Меркульева Н.С., **Вещицкий А.А.**, Горский О.В., Туртикова О.В., Тыганов С.А., Шенкман Б.С., Мусиенко П.Е. Влияние опорного стимула на кинематику локомоторных движений в условиях моделируемой микрогравитации // Материалы XXIII съезда физиологического общества им. И.П. Павлова, Воронеж. – 2017. – С. 286.